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Instability of rotating convection
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Convection rolls in a rotating layer can become unstable to the Küppers–Lortz
instability. When the horizontal boundaries are stress free and the Prandtl number is
finite, this instability diverges in the limit where the perturbation rolls make a small
angle with the original rolls. This divergence is resolved by taking full account of
the resonant mode interactions that occur in this limit: it is necessary to include two
roll modes and a large-scale mean flow in the perturbation. It is found that rolls of
critical wavelength whose amplitude is of order ε are always unstable to rolls oriented
at an angle of order ε2/5. However, these rolls are unstable to perturbations at an
infinitesimal angle if the Taylor number is greater than 4π4. Unlike the Küppers–
Lortz instability, this new instability at infinitesimal angles does not depend on the
direction of rotation; it is driven by the flow along the axes of the rolls. It is
this instability that dominates in the limit of rapid rotation. Numerical simulations
confirm the analytical results and indicate that the instability is subcritical, leading to
an attracting heteroclinic cycle. We show that the small-angle instability grows more
rapidly than the skew-varicose instability.

1. Introduction
Convection in a rotating layer of fluid has been the subject of a great deal of

theoretical and experimental research. This problem is relevant to convectively driven
fluid flows in the Earth’s atmosphere, ocean and interior and also in the Sun and
other stars, where the influence of rotation is generally important. Moreover, rotating
convection generates some interesting dynamics, with a much more complicated
structure than in the non-rotating case.

As first demonstrated by Küppers & Lortz (1969), convection rolls can become
unstable to rolls with a different orientation. In the limit of infinite Prandtl number,
Küppers & Lortz (1969) showed that, provided the Taylor number is greater than
2285, this instability occurs at onset, with the angle between the two sets of rolls being
approximately 58◦. It follows that the bifurcation from the stationary solution leads
directly to a time-dependent flow. By considering three sets of rolls at an angle of 60◦,
Busse & Heikes (1980) showed that the dynamics can take the form of an attracting
heteroclinic cycle, with switching between the rolls occurring in an apparently random,
noise-dependent way. When non-Boussinesq effects are incorporated into the model,
a subcritical bifurcation to steady hexagons occurs; this branch of solutions becomes
unstable as the Rayleigh number is increased, and there is a stable limit cycle (Swift
1984; Soward 1985).

At finite Prandtl number with stress-free boundaries, there is an additional compli-
cation. As originally found by J. W. Swift and reported by Clune & Knobloch (1993),
the Küppers–Lortz instability diverges as the angle between the two sets of rolls
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tends to zero, for any value of the rotation rate. This means that the coefficient in the
relevant amplitude equations, and hence the growth rate of the instability, tends to
infinity. This suggests that rolls are always unstable to small-angle perturbations, but
also indicates a breakdown in the general theory given by Clune & Knobloch (1993)
in the case of stress-free boundary conditions at finite Prandtl number.

The origin of the breakdown in the analysis is a large-scale two-dimensional flow
with vertical vorticity. With stress-free boundaries, this mean flow, independent of
the vertical coordinate, is marginal in the sense that its decay rate tends to zero as
its horizontal length scale increases. Its evolution must therefore be included in any
treatment of the stability problem for rolls by means of amplitude equations. As shown
by Zippelius & Siggia (1983), these mean flows also play a crucial role in the dynamics
of non-rotating convection, and tend to have a destabilizing influence by coupling
together two different perturbation rolls. The work of Zippelius & Siggia (1983) was,
however, incomplete, and further mechanisms of instability were considered by Busse
& Bolton (1984) and later by Bernoff (1994). Our work extends that of Bernoff (1994)
to the rotating case.

The vanishing decay rate of the slowly varying mean flows is peculiar to stress-free
boundaries. With rigid boundaries, for example, the Küppers–Lortz instability still
occurs (Küppers 1970; Busse & Clever 1979b; Clever & Busse 1979), but there is no
divergence at small angles, because the large-scale flow is strongly damped.

Since stress-free boundaries cannot be achieved in the laboratory, their relevance
can be questioned. However, stress-free boundaries may be appropriate in some
astrophysical applications; moreover, they are very commonly used in analytical
work, since they allow simple trigonometric eigenfunctions, and also in numerical
simulations.

The effect of a mean flow on the Küppers–Lortz instability has previously been
considered by Ponty, Passot & Sulem (1997). They obtained an asymptotic scaling in
which the angle between the rolls is of order ε2/3 and the growth rate of the instability
is of order ε4/3, where ε is the order of magnitude of the amplitude of the original
rolls. However, Ponty et al. (1997) included only a single set of perturbation rolls
and the mean flow in their calculation. We demonstrate in this paper that such an
approach is inadequate for the small-angle instability; as in the non-rotating case
described by Busse & Bolton (1984) and Bernoff (1994), it is necessary to include two
sets of perturbation rolls and the mean flow.

In this paper we investigate the Küppers–Lortz instability for small angles between
the basic rolls and the perturbation rolls. Our work is limited to the case in which
the basic rolls have exactly critical wavelength. Sections 2 and 3 summarize known
results on the steady convection rolls and the Küppers–Lortz instability. The instability
for small angles is studied in detail in § 4, the skew-varicose instability in § 5. The
physical origin of the small-angle instability is discussed in § 6. Finally, some numerical
investigations of the instability and its nonlinear evolution are presented in § 7.

2. Steady convection rolls
The dimensionless governing equations for convection in a fluid with kinematic

viscosity ν and thermal diffusivity κ in a layer of depth d rotating about a vertical
axis with angular velocity Ωẑ are

1

σ

(
∂u

∂t
+ u · ∇u

)
+ τẑ × u = −∇P + Rθẑ + ∇2u, (2.1)
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∂θ

∂t
+ u · ∇θ − w = ∇2θ, (2.2)

where u = (u, v, w) is the fluid velocity, θ is the temperature perturbation from the
conduction state and P is the pressure. The dimensionless parameters are the Rayleigh
number R, the Prandtl number σ = ν/κ and the rotation parameter τ = 2Ωd2/ν which
is the square root of the Taylor number.

We assume that the boundaries are stress-free and thermally conducting, so that

w =
∂u

∂z
=
∂v

∂z
= θ = 0 (2.3)

at the boundaries z = 0 and z = 1. These conditions ensure that the linear eigenfunc-
tions are sinusoidal so that analytical solutions to the linear and weakly nonlinear
stability problems can be obtained. The linear theory for this problem is well known
(Chandrasekhar 1961). The stationary state is unstable to convection with a wave-
number k if the Rayleigh number exceeds the critical value

Rm =
(π2 + k2)3 + τ2π2

k2
. (2.4)

The marginal curve R = Rm(k) has a minimum at k = kc, where R = Rc = 3(π2 + k2
c )

2.
The value of kc, which corresponds to the first mode to become unstable as R is
increased, may be found from

τ2π2 = (2k2
c − π2)(π2 + k2

c )
2, (2.5)

an identity that is used repeatedly in our analysis. It is easily seen from (2.5) that as the
rotation rate is increased, the preferred wavenumber increases and the convection cells
correspondingly become increasingly narrow. In this paper we consider the stability
of rolls with the critical wavenumber: therefore wherever k appears subsequently, kc
is intended. Perturbations to the rolls need not have critical wavenumber.

The weakly nonlinear theory is well established (see, e.g., Bassom & Zhang 1994).
The variables u and θ are expanded in a small parameter ε as

u ∼ εu1 + ε2u2 + ε3u3 + · · · , (2.6)

θ ∼ εθ1 + ε2θ2 + ε3θ3 + · · · , (2.7)

with R = Rc+ε
2R2. At first order in ε the linear problem is obtained. After eliminating

P by taking ẑ · ∇× and ẑ · ∇×∇× of (2.1), the solution for convection rolls with their
axes aligned in the y-direction is found to be

w1 = A sin πz sin kx, (2.8)

u1 = A cos πz cos kx π/k, (2.9)

v1 = −A cos πz cos kx τπ/ka2, (2.10)

θ1 = A sin πz sin kx /a2, (2.11)

where the amplitude A is arbitrary at this stage and we have introduced a2 = π2 + k2.
At second order the solution is

w2 = u2 = 0, (2.12)

v2 = −A2π2τ sin 2kx /8k3σa2, (2.13)

θ2 = −A2 sin 2πz /8πa2. (2.14)
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At third order in ε a solvability condition is obtained, yielding the following relation-
ship between R2 and A:

8k4σ2a2R2 = (σ2k4Rc − τ2π4)A2. (2.15)

It follows that the bifurcation to rolls is supercritical provided σ>σc(τ)=(τ2π4/k4Rc)
1/2.

The function σc(τ)→ 0 in the limits of small and large τ; its maximum value, σc = 1/3,
occurs when τ = 2π2. We assume throughout that σ > σc.

3. The Küppers--Lortz instability
The original analysis of Küppers & Lortz (1969) assumed infinite Prandtl number

and showed that the weakly nonlinear convection rolls are unstable if τ2 > 2285. The
instability takes the form of convection rolls aligned at some angle Φ to the original
rolls, so that, for example, the vertical velocity takes the form

w ∼ εA sin πz sin kx+ δB sin πz sin(kx+ mx+ ly), (3.1)

where tanΦ = l(k + m)−1 and δ � ε is the amplitude of the perturbation. Since the
calculation is weakly nonlinear, the perturbations must have wavenumbers close to
the marginal circle if they are to grow. In fact, unless Φ is small, the growth rate of
perturbations is captured accurately by taking the perturbation rolls to have exactly
the critical wavenumber. The perturbation wavenumbers are therefore related by

2km+ m2 + l2 = 0. (3.2)

The more complicated case of finite Prandtl number is described in detail by Ponty
et al. (1997). At order εδ, terms with a trigonometric dependence cos(mx + ly) and
cos(2kx + mx + ly) are generated. At order ε2δ, a solvability condition is obtained
that gives the eigenvalue corresponding to the growth rate of the perturbation. This
cumbersome expression is not given here. However, we note the important feature
that in the limit l → 0, with ε fixed, the growth rate λ of the instability diverges (Ponty
et al. 1997):

λ ∼ τπ2ε2A2

4lkσa2
. (3.3)

Clearly, this divergence is not physical, but results from a breakdown in the asymptotic
scalings used. The aim of the next section is to determine the nature of this breakdown
and to obtain a correct expression for the growth rate of the instability when l becomes
small.

4. The small-angle instability
In this section we consider the Küppers–Lortz instability where the perturbing B

rolls make a small angle with the original A rolls. In keeping with the previous work
of Küppers & Lortz (1969) and Ponty et al. (1997), we consider only the case where
the A rolls have wavenumber kc. The wavenumber of the perturbing B rolls is close
to, but not necessarily equal to, kc. In addition to the small-angle instability that is the
focus of this paper, our scalings permit consideration of the skew-varicose instability
described by Busse & Bolton (1984) and Bernoff (1994), to which the A rolls may
also be susceptible; see § 5.

It is important first to consider the mode interactions involved. In the analysis sum-
marized in § 3, neither of the secondary modes generated at O(εδ) has a wavenumber
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Figure 1. Mode interactions involved in the small-angle instability. Each arrow represents the
wavevector of one of the modes involved. The marginal circle is also shown, on which the wavenum-
ber is kc. The basic rolls A are perturbed by the rolls B. For small angles Φ, a small-wavenumber
mode is forced, which in turn forces a near-marginal mode C .

near kc, so both of these modes are regarded as ‘slaved’.† When m and l are small,
however, the mode with a horizontal dependence cos(mx+ ly) represents a large-scale
mean flow, independent of z and varying only slowly in the horizontal. With stress-
free boundaries, this mode is only weakly damped, with a decay rate σ(l2 + m2). If
l and ε have similar orders of magnitude, this mode is no longer slaved and must
be allowed to evolve independently. Furthermore, the interaction of this mean flow
mode and the A rolls generates an additional mode, C , with a horizontal dependence
sin(kx− mx− ly). This mode lies close to the circle of critical modes (figure 1), so it
must also be included in the calculation. Since we are concerned only with the linear
instability of the A rolls, it is clear that no other near-marginal modes are generated.

There are therefore three near-marginal modes involved in the instability. As
found by Bernoff (1994), stability problems of the type described here are quite
subtle, in the sense that apparently small terms can significantly affect the growth
rates of perturbations. Bernoff’s approach involves deriving a set of equations for
the amplitudes of the rolls and the mean flow. In contrast to the usual Newell–
Whitehead–Segel equations (Newell & Whitehead 1969; Segel 1969), these amplitude
equations contain terms of mixed asymptotic order; without this feature, they cannot
reproduce the established long-wavelength stability boundaries of convection rolls
(Busse & Bolton 1984). Thus, although they have no strict mathematical justification,
these mixed-order amplitude equations prove effective.

We adopt a similar approach in tackling the corresponding stability problem
for rotating convection. Thus we begin by deriving amplitude equations of mixed
asymptotic order by systematic, if not rigorous, means. These equations extend those
of Bernoff (1994), and collapse to his when τ = 0 (with the exception of one term,
which Bernoff omitted, but which, fortunately, plays no part in the instabilities
discussed here). Consideration of the stability of convection rolls according to these
equations motivates various asymptotic balances, which we then examine. Once
each balance is determined, it can be investigated systematically by an appropriate
asymptotic expansion without recourse to mixed-order amplitude equations. Although
we have carried out such an expansion in each case, we do not present the details
because the results are no different from those based on the amplitude equations.
Thus the mixed-order amplitude equations serve as a convenient organizing centre
for the various scalings, but they are not essential to our arguments. The reason

† Of course, if Φ is close to 60◦, the interaction between the basic and the perturbing rolls
produces a mode that is nearly marginal. However, with our focus on the small-angle instability,
we do not consider this circumstance further.
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for introducing them is that otherwise it is difficult to justify the apparently obscure
scalings used.

As in § 2, we expand u and θ in powers of ε according to (2.6) and (2.7), where
again R = Rc+ ε2R2. Now, however, we allow the amplitude of the rolls to vary slowly
on the spatial scales

X = εx, Y = εy. (4.1)

This scaling is somewhat arbitrary, because we use our amplitude equations to infer
the behaviour of the convection on a variety of different slow spatial and temporal
scales. However, the choice (4.1) is particularly convenient, ensuring that all necessary
terms (except one) are present in the amplitude equations. The missing term can in
any event be inferred from the rotational invariance of the problem. Then (2.8)–(2.11)
become

w1 = Re (−iA(X,Y , t) exp ikx) sin πz, (4.2)

u1 = Re (A(X,Y , t) exp ikx π/k) cos πz, (4.3)

v1 = Re (−A(X,Y , t) exp ikx τπ/ka2) cos πz, (4.4)

θ1 = Re (−iA(X,Y , t) exp ikx /a2) sin πz, (4.5)

where the amplitude A is now a complex function of X, Y and t.
The large-scale mean flow does not arise at this order in the expansion since it is

generated by a quadratic self-interaction of the rolls. The question is then: at what
order should the mean flow be introduced into the expansion? Regardless of the choice
that is made, the amplitude equations contain terms of mixed asymptotic order (see,
e.g., the equations of Bernoff 1994 and the analogous equations derived by Barthelet
& Charru 1998 and Charru & Barthelet 1999 for interfacial waves). Ultimately,
however, the point is moot because we merely use the amplitude equations to suggest
other asymptotic scalings, then carry out calculations with these (consistent) scalings.

In order to compute all the terms required by our subsequent analysis, we suppose
that the evolution of A with time may be written in the form

∂A

∂t
= ε2Â2 + ε3Â3. (4.6)

Then Â2 and Â3 are determined by applying solvability conditions at O(ε3) and O(ε4),
respectively.

At O(ε2), as at all orders in ε, the solution for u and θ may be determined up to
the addition of an arbitrary multiple of the linear eigensolution. Different choices of
this multiple correspond to a small renormalization of A. This does not affect the
leading-order terms in the amplitude equations, but it does affect higher-order terms,
such as we calculate here. In order to determine Â3 uniquely, therefore, it is necessary
to specify a normalization condition to fix A; we apply the condition

εA =
2i k

π

∫ 2π/k

0

∫ 1

0

w e−ikx sin πz dz dx. (4.7)

Other authors, for example Cross et al. (1983) and Bernoff (1994), apply other
normalization conditions, and so they obtain different, but equivalent, results beyond
leading order in their amplitude equations.
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At O(ε2), we find

w2 = 0, (4.8)

u2 = Re

((
iπAX
k2
− iτπAY

k2a2

)
exp ikx

)
cos πz +U(X,Y , t), (4.9)

v2 = Re

((
− iπAY

k2
− iτπ(3k2 + π2)AX

k2a4

)
exp ikx

)
cos πz

+Re

(
iτπ2A2

8k3σa2
exp 2ikx

)
+ V (X,Y , t), (4.10)

θ2 = Re

(
2kAX
a4

exp ikx

)
sin πz − |A|

2

8πa2
sin 2πz. (4.11)

We have introduced a large-scale mean flow (U,V ) at this order so that it advects
the pattern in the leading-order contribution Â2.

At O(ε3) we find Â2 from applying the usual solvability condition to terms propor-
tional to exp±ikx and sin πz or cos πz to eliminate secular terms. We find

Â2 = −ikUA+
k2γR2

12a2
A+ k2γAXX − (σ2k4Rc − τ2π4)γ

96k2σ2a4
A|A|2, (4.12)

where

γ =
12σ

3k2σ − k2 + 2π2
.

Apart from the advection term −ikUA, these terms are those of the Newell–
Whitehead–Segel equation (Newell & Whitehead 1969; Segel 1969).

Since it is necessary to consider the equations at O(ε4) in order to determine Â3,
we must compute the solution at O(ε3), though this is a rather tedious calculation,
even using the computer algebra package Maple, as we have done. The solution is
of sufficient complexity that little insight would be gained by displaying it here. Of
particular significance, however, is the vertical vorticity, which at this order contains
a component ω(X,Y , t), independent of depth, related to the mean flow (U,V ) by(

∂2

∂X2
+

∂2

∂Y 2

)
U = − ∂ω

∂Y
,

(
∂2

∂X2
+

∂2

∂Y 2

)
V =

∂ω

∂X
.

Indeed, we define ε3ω(X,Y , t) to be the x- and z-average of the vertical component
of the vorticity. Note that although A is in general complex, ω is real.

At O(ε4), the solvability condition to eliminate secular terms provides Â3, and so
(4.6) becomes

∂A

∂t
= ε2

{
−ikUA+

k2γR2

12a2
A+ k2γ

(
∂

∂X
− εi

2k

∂2

∂Y 2

)2

A− (σ2k4Rc − τ2π4)γ

96k2σ2a4
A|A|2

}

+ε3

{
−U ∂A

∂X
− V ∂A

∂Y
− 2kσ(3k4σ + 2π4 − 5k4)R2 i

c2a4

∂A

∂X

+
4iσk(−6π4 − π2k2 + 29k4 + 9π2k2σ − 15k4σ)

c2a2

∂3A

∂X3
+
τπ2

ca2

(
3
∂U

∂Y
− ∂V

∂X

)
A

−2(π4 + 2π2k2 − 2k4 + 3k4σ)

ca2
A
∂U

∂X
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− i(6π4 − 7π2k2 − 3π2k2σ + 3k4σ2)τ

16σca2k3
A
∂|A|2
∂Y

+ic+

(
A2 ∂A

∗

∂X
+ |A|2 ∂A

∂X

)
+ ic−

(
A2 ∂A

∗

∂X
− |A|2 ∂A

∂X

)}
, (4.13)

where

c = 3k2σ − k2 + 2π2 = 12σ/γ,

c+ = [9σ3(π2 + 7k2)k6 + 3σ2(14π4 + π2k2 − 31k4)k4

+4(2k2 − π2)π2(3σπ2k2 − π4 + 2π2k2 + 6k4)]
/

(16σca2k3),

c− =
(2k2 − π2)(3k4σ2 − 3π2k2σ − π2a2)

4σck3
.

In writing (4.13), we have completed the linear spatial derivative term in the
form (∂/∂X− 1

2
εi∂2/∂Y 2/k)2A, which reflects the rotational invariance of the original

convection problem about a vertical axis – see Newell & Whitehead (1969). The extra
term, proportional to ∂4A/∂Y 4, is needed in some of the scalings that follow.

An evolution equation for ω may be found by writing

∂ω

∂t
= εω̂1 + ε2ω̂2, (4.14)

then averaging the vertical vorticity equation in x and z to obtain

∂ω

∂t
=

ε

2k2a2

{
(π4 − k4)

∂2|A|2
∂X∂Y

+
π2τ

2

(
∂2|A|2
∂X2

− ∂2|A|2
∂Y 2

)}
+ε2σ

(
∂2ω

∂X2
+
∂2ω

∂Y 2

)
+

ε2i

4k3a2

×
{[

(π4 − k4)
∂

∂Y

(
A

(
∂2A∗

∂Y 2
− 3

∂2A∗

∂X2

))
+2(π4 − k4)

∂

∂X

(
∂A

∂Y

∂A∗

∂X

)
+ 2(2k2 − π2)k2 ∂

∂Y

(
A
∂2A∗

∂X2

)]
− c.c.

}
− iπ2τε2

4a4k3

{[
(2k2 + π2)

∂

∂X

(
A
∂2A∗

∂X2

)
− 2(2k2 + π2)

∂

∂Y

(
A
∂2A∗

∂X∂Y

)
−π2 ∂

∂X

(
A
∂2A∗

∂Y 2

)]
− c.c.

}
. (4.15)

It is simpler to deal with the equations (4.13) and (4.15) in the form

∂A

∂t
= ε2

{
−ikUA+ α1A+ α2

(
∂

∂X
− εi

2k

∂2

∂Y 2

)2

A− α3A|A|2
}

+ε3
{
−U ∂A

∂X
− V ∂A

∂Y
+ iα4

∂A

∂X
+ iα5

∂3A

∂X3
+ α6

(
3
∂U

∂Y
− ∂V

∂X

)
A

+α7A
∂U

∂X
+ iα8A

∂|A|2
∂Y

+ iα9A
∂|A|2
∂X

+ iα10

(
A2 ∂A

∗

∂X
− |A|2 ∂A

∂X

)}
, (4.16)
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∂ω

∂t
= ε

{
β1

∂2|A|2
∂X∂Y

+ β2

(
∂2|A|2
∂X2

− ∂2|A|2
∂Y 2

)}
+ ε2σ

(
∂2ω

∂X2
+
∂2ω

∂Y 2

)
+ε2i

{[
β3

∂

∂Y

(
A

(
∂2A∗

∂Y 2
− 3

∂2A∗

∂X2

))
+ +2β3

∂

∂X

(
∂A

∂Y

∂A∗

∂X

)
+ β4

∂

∂Y

(
A
∂2A∗

∂X2

)]
− c.c.

}
+ε2i

{[
β5

∂

∂X

(
A
∂2A∗

∂X2

)
− 2β5

∂

∂Y

(
A
∂2A∗

∂X∂Y

)
+ +β6

∂

∂X

(
A
∂2A∗

∂Y 2

)]
− c.c.

}
, (4.17)

where α1–α10 and β1–β6 are defined by comparing (4.13) and (4.15) with (4.16) and
(4.17).

In the non-rotating limit, the equations (4.16)–(4.17) are equivalent to those derived
by Bernoff (1994) (with the exception of the term iAXXX , which Bernoff omitted).
However, our normalization condition (4.7) differs from Bernoff’s and so a near-
identity transformation of A and ω is necessary to bring his and our equations into
agreement (after appropriately rescaling).

4.1. Stability of rolls

In this subsection we use (4.16) and (4.17) to investigate the stability of rolls with
critical wavenumber to small-angle disturbances. To this end we write

A = A0 + B(t) exp i(mx+ ly) + C∗(t) exp−i(mx+ ly),

where the unperturbed roll amplitude A = A0 satisfies (2.15) and with no loss of
generality is real. The perturbation amplitudes satisfy B � A and C � A.

According to our scaling (4.1), the wavenumbers l and m should be O(ε). However,
as we explain below, other asymptotic scalings of l and m are necessary to reveal
the stability properties of the A rolls. We therefore treat ε, l and m as independent
parameters, until their relative magnitudes are decided in §§ 4.4, 4.5 and 4.6. The
corresponding mean flow is driven by the vertical vorticity in the form

ω = ω(t) exp i(mx+ ly) + ω∗(t) exp−i(mx+ ly).

Substitution of these expressions into (4.16) and (4.17), and linearization in perturba-
tion amplitudes leads to the following system of equations for the evolution of B(t),
C(t) and ω(t):  Ḃ

Ċ
ω̇

 =

 Ξ11 Ξ12 Ξ13

Ξ21 Ξ22 Ξ23

Ξ31 Ξ32 Ξ33

 B
C
ω

 , (4.18)

where the coefficients of the matrix are

Ξ11 = −α2(m+ 1
2
l2/k)2−ε2α3A

2
0 − ε2α4m+ α5m

3 − ε2lα8A
2
0 − ε2mα9A

2
0 + ε2mα10A

2
0,

Ξ12 = −ε2α3A
2
0 − ε2lα8A

2
0 − ε2mα9A

2
0 − ε2mα10A

2
0,

Ξ13 =
ε3kA0l

m2 + l2
− ε3α6(m

2 + 3l2)A0

m2 + l2
− ε3α7lmA0

m2 + l2
,

Ξ21 = −ε2α3A
2
0 + ε2lα8A

2
0 + ε2mα9A

2
0 + ε2mα10A

2
0,

Ξ22 = −α2(−m+ 1
2
l2/k)2 − ε2α3A

2
0 + ε2α4m− α5m

3 + ε2lα8A
2
0 + ε2mα9A

2
0 − ε2mα10A

2
0,
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Ξ23 = − ε
3kA0l

m2 + l2
− ε3α6(m

2 + 3l2)A0

m2 + l2
− ε3α7lmA0

m2 + l2
,

Ξ31 = ε−1[−lmβ1 + (l2 − m2)β2]A0

+ε−1[β3l(3m
2 − l2)− β4m

2l − β5m
3 + 2β5ml

2 − β6ml
2]A0,

Ξ32 = ε−1[−lmβ1 + (l2 − m2)β2]A0

−ε−1[β3l(3m
2 − l2)− β4m

2l − β5m
3 + 2β5ml

2 − β6ml
2]A0,

Ξ33 = −σ(m2 + l2).

We seek solutions for which B, C and ω are proportional to exp λt, and calculate
the growth rate λ for particular distinguished scalings between the small parameters
ε, l and m.

As it stands, (4.18) contains terms of mixed asymptotic orders, and is therefore of
uncertain value; in §§ 4.4, 4.5 and 4.6 we show how three consistent asymptotic scalings
may be deduced from (4.18). Indeed, once these scalings are noted, the corresponding
results may be obtained directly from the governing equations, without recourse to
(4.18). However, in view of the rather obscure nature of two of the three crucial
scalings, we find (4.18) a useful intermediate step. No one consistent asymptotic
scaling can be found to cover all the necessary cases.

4.2. Matching with the Küppers–Lortz instability

We start our analysis of the perturbation system (4.18) by showing how the divergent
growth rate (3.3) may be recovered from it. The finite-angle Küppers–Lortz instability,
as discussed in § 3, requires the B rolls to have the critical wavenumber and ignores
the C rolls (because, when l and m are not small, these rolls are not nearly marginal).
Thus to leading order 2km + l2 = 0, with the consequence that |m| � |l| as l → 0.
If C is ignored (i.e. set to zero) and ω is regarded as slaved in the expression for
ω̇ in (4.18), then ω = τπ2A0B/4εk

2a2σ and it follows from the expression for Ḃ that
λ = τπ2ε2A2

0/4lkσa
2 which is the divergent result (3.3) obtained earlier.

4.3. The scaling of Ponty et al.

In their analysis of the small-angle instability, Ponty et al. (1997) ignore the C rolls,
but allow the vertical vorticity to evolve independently of the B rolls. The result is a
truncation of (4.18) to the system

λB = ε3l−1kA0ω, (4.19)

λω = ε−1β2l
2A0B − σl2ω, (4.20)

where m = O(l2) and so does not appear in these equations at leading order. It follows
that the growth rate λ satisfies the quadratic equation

λ2 + σl2λ− τπ2ε2A2
0l

4ka2
= 0. (4.21)

This equation removes the blow-up of the growth rate at small angles between A
rolls and perturbation rolls, and reduces to (3.3) if the term λ2 is neglected, which
corresponds to slaving ω to B. This is the equation from which Ponty et al. (1997)
deduce the scaling l = O(ε2/3) and λ = O(ε4/3). However, this approximation, like the
Küppers–Lortz result described above, is invalid for small l.

4.4. Scaling 1: l = O(ε2/5)

To determine the correct approach in the limit of small l, it is important first to
consider the conditions under which the C mode can be ignored. We assume that B is
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nearly marginal, so that m = O(l2) as l → 0. Since the stability problem is linear, we
lose no generality in choosing B to be O(1), then the expression for ω̇ in (4.18) implies
that ω = O(ε−1). This generates a forcing term in Ċ of order ε2/l, which may be
balanced with the terms λC and l4C if C = O(ε2/l5) and λ = O(l4). Hence the result
(3.3) is valid, and the C mode remains negligible, provided that l � ε2/5. Furthermore,
when this condition is satisfied, λ is no greater than O(ε8/5). If l = O(ε2/5) or smaller,
C is of the same order as B and must be included in the analysis.

This motivates the following scaling:

B = O(1), C = O(1), ω = O(ε−1), l = O(ε2/5), λ = O(ε8/5). (4.22)

In addition, the perturbation wavenumber m = O(l2), but we do not insist that
m = −l2/2k (i.e. the wavenumber of the B rolls is not necessarily exactly critical).
With this scaling, the system (4.18) simplifies to the leading-order equations

(λ+ γ(mk + 1
2
l2)2)B − kε3A0ω

l
= 0, (4.23)

(λ+ γ(−mk + 1
2
l2)2)C +

kε3A0ω

l
= 0, (4.24)

σω − τπ2A0(B + C)

4εk2a2
= 0, (4.25)

from which it follows that λ satisfies the quadratic equation

λ2 + 2γ(m2k2 + 1
4
l4)λ+ γ2(m2k2 − 1

4
l4)2 +

τπ2ε2A2
0γml

2σa2
= 0. (4.26)

As a consequence, if m = 0 the A rolls are stable to perturbations with this scaling.
However, for small l, the system is always unstable to modes with τml < 0. If

we assume (as we do throughout this paper) that τ > 0 then in particular there is
instability when the B rolls have critical wavelength (with m = −l2/2k), corresponding
to a rotation of the alignment of the axes of the rolls in the same sense as the rotation
of the layer.

The scaling l = O(ε2/5) is of particular significance because it is here that the growth
rate achieves its maximum value. For perturbation rolls with the critical wavenumber,
the positive root of (4.26) has the maximum value λc = γl4c /3, where lc satisfies

l5c =
9τπ2ε2A2

0

16γkσa2
. (4.27)

If the wavenumber of the perturbation rolls is not required to be critical, and the
positive root of (4.26) is instead maximized over all values of l and m, we find
λmax = 5γl4max/12 ( ≈ 1.01λc), where

l5max =

√
3τπ2ε2A2

0

4γkσa2
and mmax =

2√
3

(
− l

2
max

2k

)
.

Since 2/
√

3 > 1, the fastest growing perturbation rolls have wavenumber slightly less
than kc.

It is instructive to examine the limits of large and small l, again with m = −l2/2k.
In the limit of large l the solution to (4.26) is λ ∼ τπ2ε2A2

0/4lkσa
2, which matches
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with (3.3). In the limit of small l, (4.26) gives

λ2 ∼ τπ2ε2A2
0γl

3

4kσa2
(4.28)

and so one might expect this expression to give the growth rate in the limit l → 0.
However, it then follows from (4.23) and (4.24) that B + C is small, showing that a
different scaling is required in order to capture this limit.

4.5. Scaling 2: l = O(ε2/3)

If B + C is small and B = O(1) then the expression for ω̇ in (4.18) implies that
ω = O(ε−1l) and that B + C = O(l). Adding Ḃ to Ċ then gives l4 = O(ε2l) and hence
l = O(ε2/3). The next scaling to be considered is therefore

B = O(1), C = O(1), B + C = O(l), ω = O(ε−1/3), l = O(ε2/3), λ = O(ε2), (4.29)

with m = O(l2), so it follows that ω satisfies

σω − τπ2A0(B + C)

4εk2a2
+

(π4 − k4)lA0(B − C)

4εk3a2
= 0. (4.30)

The equations for B and C derived from (4.18) contain terms of mixed asymptotic or-
ders, but a proper description of this scaling may be achieved from the corresponding
leading-order equations for B+C and B−C , which are each of consistent asymptotic
order:

λ(B + C) = −2ε2α3A
2
0(B + C)− 6ε3α6A0ω − α2ml

2(B − C)/k, (4.31)

λ(B − C) = 2ε3kA0ω/l. (4.32)

Hence a quadratic equation for λ is obtained:

λ2 + ε2A2
0

(
5(2k2 − π2)π2γ

48k2σ2
+
π2 − k2

2k2σ
+
γk2

16

)
λ

+
τπ2γlmε2A2

0

2σa2
+
ε4A4

0γ(π
2 − k2)ζ

96k4σ3
= 0, (4.33)

where

ζ = 3σ2k4 − 2π2k2 + π4

and ζ > 0 for σ > σc. Note that with this scaling, the system can be stable or
unstable, depending on the values of l and τ. In the limit l → ∞, (4.33) simplifies to
λ2 = −τπ2ε2A2

0γlm/2σa
2, which matches with the small-l solution of (4.26). For small

l, (4.33) becomes

λ2 + ε2A2
0

(
5(2k2 − π2)π2γ

48k2σ2
+
π2 − k2

2k2σ
+
γk2

16

)
λ+

ε4A4
0γ(π

2 − k2)ζ

96k4σ3
= 0. (4.34)

which indicates that there is instability if k > π. Since k is determined by τ through
(2.5), this condition for instability can be written as

τ2 > 4π4 ≈ 389.6.

4.6. Scaling 3: l = O(ε)

In each of the above scalings, the growth rate λ is small compared with l2, so the ω
mode is slaved to the B and C modes. We now seek a third and final scaling in which
the vertical vorticity evolves independently:

B = O(1), C = O(1), B + C = O(l), ω = O(1), l = O(ε), λ = O(ε2). (4.35)
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Again m = O(l2). With this scaling the following cubic for the growth rate λ is
derived:

λ3 +

(
σl2 +

ε2A2
0γζ

48k2σ2

)
λ2 + ε2A2

0l
2

(
5(2k2 − π2)π2γ

48k2σ
+
π2 − k2

2k2
+
γk2σ

16

)
λ

+
ε4A4

0l
2γ(π2 − k2)ζ

96k4σ2
= 0. (4.36)

Note that although we have eliminated τ from this equation using (2.5), the value of
τ2 determines k. It is significant that λ depends only on the squares of the quantities
l and τ and is therefore independent of the direction of rotation; this point will be
considered further in § 6.

In this scaling, the criterion for instability is again τ2 > 4π4. This means that
rotating convection rolls are unstable to rolls making an infinitesimal angle with the
original rolls if the Taylor number is greater than 4π4. It is of interest to note that
this result does not depend on the Prandtl number. Also, the critical value of the
Taylor number is considerably lower than the value of 2285 obtained by Küppers &
Lortz (1969) for instability to rolls at finite angles.

In the limit of large l, (4.36) matches with the small-l limit of (4.34). For small l,
(4.36) has a negative eigenvalue independent of l and a pair of eigenvalues of order
εl obeying

λ2 ∼ 1
2
ε2A2

0l
2(k2 − π2). (4.37)

The three scalings considered above, in which l = O(ε2/5), l = O(ε2/3) and l = O(ε),
were obtained from the system (4.18), which contains terms of different orders.
We have therefore, for each scaling, confirmed our calculations by a more careful
asymptotic analysis. The results are as stated above, and so we do not present the
details.

5. The skew-varicose instability
A second significant mode of instability is the skew-varicose instability (Busse &

Clever 1979a), which takes the form of a periodic modulation of the roll thickness in
the axial direction. For non-rotating convection, rolls are skew-varicose unstable in a
region given approximately by (Busse & Bolton 1984)

R − Rc > 108
7
π2k(kc − k), (5.1)

a result recovered by Bernoff (1994) by means of a self-consistent scaling in his
amplitude equations. For rotating convection, we now apply a similar calculation to
(4.16) and (4.17).

Stability is analyzed by considering rolls with |k| − kc = O(ε2) and perturbations
with |k| − kc = O(ε), in which case the growth rate λ of the instability is O(ε2). The
instability is captured with rolls and perturbations of the form

A =
[
A0 + δB(t) exp i(pX + qY ) + δC∗(t) exp−i(pX + qY )

]
exp iεKX,

ω = δω(t) exp i(pX + qY ) + δω∗(t) exp−i(pX + qY ),

where δ � 1, the essential terms in the amplitude equations being

At = ε2
(−ikUA+ α1A+ α2AXX − α3A|A|2)+ iε3α4AX,
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ωt = ε
[
β1(|A|2)XY + β2((|A|2)XX − (|A|2)YY )

]
+ σ(ωXX + ωYY )

+iε2
{
β3

[
A(A∗YY − 3A∗XX )− c.c.

]
Y

+ β4[AA
∗
XX − c.c.]Y

+ β5[AA
∗
XX − c.c.]X − 2β5[AA

∗
XY − c.c.]Y + β6[AA

∗
YY − c.c.]X} .

In deriving an expression for λ, it is again convenient to consider the perturbation
mode amplitudes in the combinations B + C and B − C , so that the leading-order
equations governing the growth rate are

λ(B + C) = −2ε2α3A
2
0(B + C)− ε3p(2α2K + α4)(B − C),

λ(B − C) =
2ε2kqA0ω

p2 + q2
− ε2α2p

2(B − C),

λω = ε[−β1pq + β2(q
2 − p2)]A0(B + C)− ε2σ(p2 + q2)ω

−ε2[q(q2 − 3p2)β3 + p2qβ4 + p3β5 − 2pq2β5 + pq2β6]A0(B − C),

which are self-consistent if λ = O(ε2), B − C = O(1), ω = O(1) and B + C = O(ε).
The skew-varicose instability is most easily analyzed in the limit p, q → 0, with

q=O(p). Then the appropriate scaling is B − C =O(1), λ=O(ε2p), ω=O(p2) and
B + C =O(εp), the dominant balance being

(B + C) = −εp(2α2K + α4)

2α3A
2
0

(B − C),

λ(B − C) =
2ε2kqA0ω

p2 + q2
,

λω = ε[−pqβ1 + (q2 − p2)β2]A0(B + C)

−ε2[q(q2 − 3p2)β3 + p2qβ4 + p3β5 − 2q2pβ5 + pq2β6]A0(B − C).

It thus follows that

λ2 = −2ε4kA2
0q

p2 + q2

{
p(2α2K + α4)

2α3A
2
0

[−pqβ1 + (q2 − p2)β2

]
+
[
q(q2 − 3p2)β3 + p2qβ4 + p3β5 − 2q2pβ5 + pq2β6

]}
, (5.2)

with instability for λ2 > 0.
In the non-rotating problem, the condition λ2 > 0 for instability in (5.2) is precisely

(5.1); see Bernoff (1994). In the rotating case, the analysis of (5.2) is more involved,
but it easily seen that for small values of q/p,

λ2 ∼ 2ε4kA2
0pq

{
β2(2α2K + α4)

2α3A
2
0

− β5

}
.

Rolls are therefore unstable to the skew-varicose instability regardless of their
wavenumber (that is, regardless of the value of K), because the signs of p and q
can be chosen to make λ2 > 0. However, the growth rate of the skew-varicose insta-
bility is O(ε2) (and is asymptotically smaller than this in the limit of small p and q),
so the small-angle instability described in § 4 grows more rapidly.
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Figure 2. Plan view of convection rolls in the rapidly rotating limit. (a) The flow is predominantly
along the rolls. (b) The flow is unstable to a mode in which the rolls become wavy.

6. The rapidly rotating limit and the physics of the small-angle instability
In the limit of rapid rotation, the equations for convection simplify considerably.

The convection cells become narrow and the appropriate scaling is τ = O(k3), Rc =
O(k4). In this limit the solution to (2.5) is k6

c ∼ τ2π2/2. It follows that in the linear
solution (2.8)–(2.11) the horizontal velocity component v1 along the axis of the rolls
is much greater than that across the rolls (figure 2a). Patterns of this type are referred
to as ‘anti-rolls’ by Bosch Vivancos, Chossat & Melbourne (1995). Such patterns
have the property that reflections in the plane act as −1, whereas in the usual case
reflections act as +1. Thus in figure 2(a) the rolls have a symmetry of reflection in
either x or y together with a reversal of the direction of flow (there is in fact no
reflection symmetry in the line of the arrows; in this respect the figure is misleading).
For rolls without rotation the reflection symmetry does not involve a reversal of the
flow. Rapidly rotating convection therefore provides a physical example of a primary
bifurcation to anti-rolls.

Interest in the rapidly rotating limit has recently arisen from the work of Bassom
& Zhang (1994), who showed that the weakly nonlinear analysis can be extended
into the fully nonlinear regime, so that nonlinear solutions with R − Rc = O(Rc) can
be obtained by solving a simple nonlinear eigenvalue problem.

In the rapidly rotating limit, rolls are unstable within each of the three scalings of
§ 4 (because τ2 � 4π4). It is therefore of interest to determine the dominant mode of
instability in this case. For large k the appropriate scalings are

τ = O(k3), Rc = O(k4), R2 = O(k4), A0 = O(k), l = O(k), γ = O(k−2). (6.1)

In the scaling l = O(ε2/5), the growth rate is given by (4.26). Substituting the scalings
in (6.1) we find that the unstable eigenvalue is of order k. In the scalings l = O(ε2/3)
and l = O(ε), governed by (4.33) and (4.36) however, the unstable eigenvalue is
of order k2. Hence it is these instabilities that dominate in the rapidly rotating
limit.

It is important to note that the terms responsible for the instability in (4.33) and
(4.36) are proportional to τ2. This means that the instability is insensitive to the sign
of τ. In the usual Küppers–Lortz instability, the sign of τ is important and rolls are
unstable to perturbation rolls rotated in the same sense as τ. Thus we have found a
new type of instability, which is driven by the rotation but does not depend on the
direction of rotation.

We now consider the physical mechanism that drives this new instability. The
instability derives from the nonlinear interaction of the original A rolls with the
perturbation B and C rolls. In the linearized flow (2.8)–(2.11), τ appears only in
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equation (2.10) for the flow v1 along the rolls, so τ2 terms must arise from the
interaction of the flow along two sets of rolls, through the u · ∇u term in (2.1). Such
terms are then eliminated from our analysis using (2.5).

The instability also has the feature that B+C is small. This means that the pattern
of the perturbed rolls can be written via the planform function

h(x, y) ∼ εA0 sin kx+ δB(sin(kx+ ly)− sin(kx− ly))

= εA0 sin kx+ 2δB cos kx sin ly. (6.2)

These perturbed rolls have a wavy appearance, shown in figure 2(b). Instabilities of
this type are referred to as the ‘zig-zag’ instability (Busse & Bolton 1984); these can
occur in non-rotating convection if the original rolls have k < kc. Here, however,
the mechanism is quite different. A large-scale mean flow in the x-direction distorts
the rolls into a wavy shape. The wavy rolls now advect momentum in such a way
as to enhance the large-scale flow. Thus in figure 2(b), right-going fluid is carried to
the upper half of the figure, while left-going fluid is carried to the lower half. This
positive feedback allows the instability to grow. The mechanism is very similar to
that responsible for the shearing instability of narrow convection rolls, described by
Howard & Krishnamurti (1986) and Rucklidge & Matthews (1996).

Equivalently, the instability can be regarded simply as a hydrodynamic instability
of the two-dimensional flow depicted in figure 2(a). This flow has inflection points
of the right type to satisfy Rayleigh’s criterion and Fjørtoft’s theorem, so it may be
unstable. The stability of the flow v = sin kx, sometimes referred to as the Kolmogorov
flow, was studied by Meshkalin & Sinai (1961), who showed that this flow becomes
unstable as its Reynolds number increases, that the eigenvalue is real when the flow
is unstable and that the first mode to become unstable as the Reynolds number is
increased has a long wavelength.

7. Numerical simulations
In this section we describe numerical simulations of the instability of convection

rolls in the presence of rotation. The motivation for this is two-fold. First, it is
of interest to check the validity of the expressions obtained analytically for the
growth rate of the instability. Secondly, numerical investigations reveal the nonlinear
development of the instability. It is clear that the instability occurs through a pitchfork
bifurcation, since a change of sign in the perturbation is equivalent to a shift of half
a wavelength in the y-direction. However, it is important to determine whether the
pitchfork is subcritical or supercritical. Although in principle this can be determined
analytically, a numerical approach provides the answer more directly.

The numerical results were obtained using the convection code described by Cox &
Matthews (1996). The method is pseudo-spectral, using Fourier modes in the horizon-
tal directions and Chebyshev polynomials in the vertical direction. Periodic boundary
conditions were applied in the horizontal directions. The numerical resolution used
was 32× 32× 41.

To investigate the growth rate of the instability four simulations were carried out,
each at a different value of the Taylor number τ2. The results are summarized in
table 1. In each case the Prandtl number was 10 and the length of the box in the
y-direction was 40, so the smallest admissible wavenumber in y is l = 2π/40. The
length of the box in the x-direction was chosen so that five pairs of rolls with critical
wavenumber were obtained. The initial condition used consisted of these five pairs
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τ2 k Rc R λ(code) λ(theory)

100 2.594 826 900 −0.13± 0.23i −0.125± 0.23i
300 3.011 1075 1200 −0.13± 0.06i −0.126± 0.059i
500 3.278 1275 1400 0.054 0.053

1000 3.710 1676 1800 0.130 0.129

Table 1. Comparison of numerical and analytical growth rates at different values of the Taylor
number.

(b)(a)

(d )(c)

Figure 3. Evolution of the convection pattern with time. The plots show the vertical velocity, with
dark shading for rising fluid and light shading for sinking fluid. (a) Aligned (5, 0) rolls (t = 0). (b)
Wavy rolls (t = 45). (c) Re-aligned (5, 1) rolls (t = 75). (d) Re-aligned (4, 3) rolls (t = 120).

of rolls plus a small random perturbation, and the growth rate of the Fourier mode
representing rolls with wave vector (kc, l) was determined. Note that these rolls have
m = 0, and do not lie on the circle of marginal modes. The theoretical results in the
final column of table 1 were obtained from (4.36) and it is clear that the agreement
between the numerical and theoretical growth rates is excellent.

To investigate the nonlinear development of the instability, one calculation was
carried out at τ2 = 500 in a square box with sides of length L = 9.584 that contained
five rolls with wavenumber kc. The Prandtl number was 10 and the Rayleigh number
was 1400 which is approximately 1.1Rc. Again the initial condition used was five pairs
of rolls with their axes aligned in the y-direction (figure 3a); these will be referred to
as (5, 0) rolls, since their wave vector is (5, 0)2π/L.

Since τ2 > 4π4, these rolls are unstable. As shown in figure 4, the (5, 1) and (5,−1)
modes grow exponentially. In accordance with the predictions of § 4, the amplitudes
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Figure 4. Nonlinear evolution of the instability of convection rolls, showing the logarithm of the
amplitude of various modes as a function of time. The mode amplitude is half the maximum vertical
velocity of the rolls, εA/2.

of these two modes are almost identical, indicating that the instability is as shown in
figure 2(b). This is confirmed by figure 3(b) which shows the pattern of convection at
t = 45. If the instability were supercritical, the pattern would equilibrate at this stage,
giving a stable pattern of wavy rolls. In fact however, the unstable modes continue
to grow, indicating that the instability is subcritical. As the instability reaches its
nonlinear phase, the (5, 1) and (5,−1) modes cease to be of equal amplitude and the
(5, 1) mode wins, leading to the pattern of (5, 1) rolls shown in figure 3(c). These rolls
are in turn unstable to the same instability, and are replaced by (4, 3) rolls (figure 3d).
The sequence then continues through (3, 4) rolls, (1, 5) rolls and (0, 5) rolls (note that
the (3, 4) rolls have critical wavenumber, but the (5, 1) rolls do not). Thus we find a
structurally stable heteroclinic cycle connecting different roll solutions, all of which
are unstable. This is analogous to the cycle found by Busse & Heikes (1980) for
three sets of rolls at an angle of 60◦ that arises from the Küppers–Lortz instability
at infinite Prandtl number. The exact number of modes in the cycle (ten in this case)
depends on the size of the box chosen for the numerical simulation.

Structurally stable heteroclinic cycles, which exist in an open set of parameter
values, are well known in dynamical systems theory (Armbruster, Guckenheimer &
Holmes 1988) and in convection problems involving modal resonances (Jones &
Proctor 1987; Proctor & Jones 1988). The behaviour of such heteroclinic cycles is
dependent on machine precision. With infinite numerical precision, the cycle would
become longer and longer as the solution gradually approached the infinite-period
heteroclinic cycle. With finite precision (as here, where the computations were carried
out with single precision arithmetic), numerical noise limits the time that can be
spent near each fixed point of the heteroclinic cycle. This time is noise-dependent,
and therefore slightly different results are obtained each time the computation is
repeated.
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8. Discussion
In this paper we have re-examined the Küppers–Lortz instability in the limit of

small angles between the basic rolls and the perturbing rolls. In this limit, including
only one perturbation roll leads to a divergent growth rate, indicating a failure of
the asymptotic methods. To resolve this problem, two perturbation rolls and a mean
flow must be considered. Three asymptotic regimes have been identified, in which the
wavenumber l of the mean flow (or equivalently the angle between the perturbation
rolls and the basic rolls) is of order ε, ε2/3 and ε2/5. The solutions for the growth
rate of the instability match correctly across the different regimes. Those in the third
regime dominate, and even exceed in magnitude the growth rates of the finite-angle
Küppers–Lortz instability. The small-angle instability identified here also grows more
rapidly than the skew-varicose instability.

For l = O(ε), rolls are unstable if the Taylor number is greater than 4π4. This
result is independent of the Prandtl number σ, although the growth rate of the
instability does depend on σ and tends to zero for large σ. This new instability has a
symmetry that is absent in the usual Küppers–Lortz instability, being independent of
the direction of rotation. However, nonlinear effects lead to a preference for the roll
alignment to rotate in the same sense as the rotation of the fluid layer. The instability
is hydrodynamic in origin, driven by the flow along rolls which itself is driven by the
Coriolis force. The mean flow leads to wavy rolls, and the waviness of rolls enhances
the mean flow.

For l = O(ε2/5), rolls are unstable for any value of the rotation rate, with a growth
rate of order ε8/5, smaller than the ε4/3 predicted by Ponty et al. (1997), who did
not include all the required modes. This instability does depend on the direction of
rotation of the fluid layer.

One of the interesting consequences of this work concerns the case where the
rotation vector is inclined. The first rolls to become unstable as R is increased
are then those aligned with the horizontal component of the rotation vector, but
these can be unstable. There is competition between the small-angle instability and
the influence of the horizontal component of the rotation vector. Our preliminary
numerical simulations show that rolls aligned at a small angle to the horizontal
component of the rotation vector can be stable.
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